Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis.

Identifieur interne : 001554 ( Main/Exploration ); précédent : 001553; suivant : 001555

A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis.

Auteurs : Jaspal Singh [Canada] ; Mike Tyers

Source :

RBID : pubmed:19684114

Descripteurs français

English descriptors

Abstract

The coupling of environmental conditions to cell growth and division is integral to cell fitness. In Saccharomyces cerevisiae, the transcription factor Sfp1 couples nutrient status to cell growth rate by controlling the expression of ribosome biogenesis (Ribi) and ribosomal protein (RP) genes. Sfp1 is localized to the nucleus in rich nutrients, but upon nutrient limitation or target of rapamycin (TOR) pathway inhibition by rapamycin, Sfp1 rapidly exits the nucleus, leading to repression of the Ribi/RP regulons. Through systematic cell-based screens we found that many components of the secretory system influence Sfp1 localization. Notably, the essential Rab escort protein Mrs6 exhibited a nutrient-sensitive interaction with Sfp1. Overexpression of Mrs6 prevented nuclear localization of Sfp1 in rich nutrients, whereas loss of Mrs6 resulted in nuclear Sfp1 localization in poor nutrients. These effects were specific to Sfp1 and independent of the protein kinase C (PKC) pathway, suggesting that Mrs6 lies in a distinct branch of TOR and ribosome biogenesis regulation. Rapamycin-resistant alleles of MRS6 were defective in the cytoplasmic retention of Sfp1, the control of cell size, and in the repression of the Ribi/RP regulons. The Sfp1-Mrs6 interaction is a nexus for growth regulation that links the secretory system and TOR-dependent nutrient signaling to ribosome biogenesis.

DOI: 10.1101/gad.1804409
PubMed: 19684114
PubMed Central: PMC2725937


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis.</title>
<author>
<name sortKey="Singh, Jaspal" sort="Singh, Jaspal" uniqKey="Singh J" first="Jaspal" last="Singh">Jaspal Singh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Genetics, University of Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Molecular Genetics, University of Toronto, Ontario</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tyers, Mike" sort="Tyers, Mike" uniqKey="Tyers M" first="Mike" last="Tyers">Mike Tyers</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19684114</idno>
<idno type="pmid">19684114</idno>
<idno type="doi">10.1101/gad.1804409</idno>
<idno type="pmc">PMC2725937</idno>
<idno type="wicri:Area/Main/Corpus">001488</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001488</idno>
<idno type="wicri:Area/Main/Curation">001488</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001488</idno>
<idno type="wicri:Area/Main/Exploration">001488</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis.</title>
<author>
<name sortKey="Singh, Jaspal" sort="Singh, Jaspal" uniqKey="Singh J" first="Jaspal" last="Singh">Jaspal Singh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Genetics, University of Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Molecular Genetics, University of Toronto, Ontario</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tyers, Mike" sort="Tyers, Mike" uniqKey="Tyers M" first="Mike" last="Tyers">Mike Tyers</name>
</author>
</analytic>
<series>
<title level="j">Genes & development</title>
<idno type="eISSN">1549-5477</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Alleles (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Cell Size (MeSH)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Drug Resistance, Fungal (genetics)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Transport (drug effects)</term>
<term>Protein Transport (physiology)</term>
<term>Protein-Serine-Threonine Kinases (physiology)</term>
<term>Regulon (physiology)</term>
<term>Ribosomes (physiology)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (physiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Stress, Physiological (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allèles (MeSH)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (physiologie)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (physiologie)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Ribosomes (physiologie)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Régulon (physiologie)</term>
<term>Résistance des champignons aux médicaments (génétique)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Stress physiologique (physiologie)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Taille de la cellule (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transport des protéines (effets des médicaments et des substances chimiques)</term>
<term>Transport des protéines (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>DNA-Binding Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Protein Transport</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
<term>Transport des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Drug Resistance, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Résistance des champignons aux médicaments</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Ribosomes</term>
<term>Régulon</term>
<term>Saccharomyces cerevisiae</term>
<term>Stress physiologique</term>
<term>Transport des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Protein Transport</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Regulon</term>
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Sequence</term>
<term>Cell Size</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Molecular Sequence Data</term>
<term>Protein Binding</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Séquence d'acides aminés</term>
<term>Taille de la cellule</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The coupling of environmental conditions to cell growth and division is integral to cell fitness. In Saccharomyces cerevisiae, the transcription factor Sfp1 couples nutrient status to cell growth rate by controlling the expression of ribosome biogenesis (Ribi) and ribosomal protein (RP) genes. Sfp1 is localized to the nucleus in rich nutrients, but upon nutrient limitation or target of rapamycin (TOR) pathway inhibition by rapamycin, Sfp1 rapidly exits the nucleus, leading to repression of the Ribi/RP regulons. Through systematic cell-based screens we found that many components of the secretory system influence Sfp1 localization. Notably, the essential Rab escort protein Mrs6 exhibited a nutrient-sensitive interaction with Sfp1. Overexpression of Mrs6 prevented nuclear localization of Sfp1 in rich nutrients, whereas loss of Mrs6 resulted in nuclear Sfp1 localization in poor nutrients. These effects were specific to Sfp1 and independent of the protein kinase C (PKC) pathway, suggesting that Mrs6 lies in a distinct branch of TOR and ribosome biogenesis regulation. Rapamycin-resistant alleles of MRS6 were defective in the cytoplasmic retention of Sfp1, the control of cell size, and in the repression of the Ribi/RP regulons. The Sfp1-Mrs6 interaction is a nexus for growth regulation that links the secretory system and TOR-dependent nutrient signaling to ribosome biogenesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19684114</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1549-5477</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2009</Year>
<Month>Aug</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Genes & development</Title>
<ISOAbbreviation>Genes Dev</ISOAbbreviation>
</Journal>
<ArticleTitle>A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>1944-58</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1101/gad.1804409</ELocationID>
<Abstract>
<AbstractText>The coupling of environmental conditions to cell growth and division is integral to cell fitness. In Saccharomyces cerevisiae, the transcription factor Sfp1 couples nutrient status to cell growth rate by controlling the expression of ribosome biogenesis (Ribi) and ribosomal protein (RP) genes. Sfp1 is localized to the nucleus in rich nutrients, but upon nutrient limitation or target of rapamycin (TOR) pathway inhibition by rapamycin, Sfp1 rapidly exits the nucleus, leading to repression of the Ribi/RP regulons. Through systematic cell-based screens we found that many components of the secretory system influence Sfp1 localization. Notably, the essential Rab escort protein Mrs6 exhibited a nutrient-sensitive interaction with Sfp1. Overexpression of Mrs6 prevented nuclear localization of Sfp1 in rich nutrients, whereas loss of Mrs6 resulted in nuclear Sfp1 localization in poor nutrients. These effects were specific to Sfp1 and independent of the protein kinase C (PKC) pathway, suggesting that Mrs6 lies in a distinct branch of TOR and ribosome biogenesis regulation. Rapamycin-resistant alleles of MRS6 were defective in the cytoplasmic retention of Sfp1, the control of cell size, and in the repression of the Ribi/RP regulons. The Sfp1-Mrs6 interaction is a nexus for growth regulation that links the secretory system and TOR-dependent nutrient signaling to ribosome biogenesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Jaspal</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics, University of Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tyers</LastName>
<ForeName>Mike</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genes Dev</MedlineTA>
<NlmUniqueID>8711660</NlmUniqueID>
<ISSNLinking>0890-9369</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C092439">MRS6 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C117421">SFP1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048429" MajorTopicYN="N">Cell Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025141" MajorTopicYN="N">Drug Resistance, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018085" MajorTopicYN="N">Regulon</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19684114</ArticleId>
<ArticleId IdType="pii">23/16/1944</ArticleId>
<ArticleId IdType="doi">10.1101/gad.1804409</ArticleId>
<ArticleId IdType="pmc">PMC2725937</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17840-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17095607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(2):e250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17327914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):2779-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Aug;176(4):2139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2007 Aug;18(4):341-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17768045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Dec 1;67(23):11209-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Jan;7(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18177722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2008 Apr;11(2):153-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18396450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 20;105(20):7194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2008 Jun;154(Pt 6):1686-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18524923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:27-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18303986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2008 Dec;20(6):678-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18930818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Mar 27;33(6):704-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19328065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2009 Jun;19(6):260-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19419870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Mar;35(6):1295-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10760132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Jun;20(11):3843-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 13;151(4):863-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2001 Feb;2(2):107-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11252952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Dec 14;294(5550):2364-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jan 10;415(6868):180-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11805837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jul 19;297(5580):395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12089449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Sep;14(9):3857-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):737-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jul 9;118(1):31-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15242642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1981 Aug;25(2):461-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7026045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Feb;11(2):872-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1990290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Jan 15;259(5093):377-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8380507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Mar 25;269(12):9205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8132658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Apr;14(4):2493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8139552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Jul 12;271(28):16813-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8663225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 4;272(27):16972-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9202009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 Mar;3(3):275-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 7;274(19):13235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10224082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Dec 14;14(23):R1014-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15589139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Jan 17;168(2):185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jul 1;19(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13933-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Feb 3;21(3):319-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16455487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Jul;8(7):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Aug 9;25(15):3546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 25;459(7250):1085-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6392-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041625</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Ontario</li>
</region>
<settlement>
<li>Toronto</li>
</settlement>
<orgName>
<li>Université de Toronto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Tyers, Mike" sort="Tyers, Mike" uniqKey="Tyers M" first="Mike" last="Tyers">Mike Tyers</name>
</noCountry>
<country name="Canada">
<region name="Ontario">
<name sortKey="Singh, Jaspal" sort="Singh, Jaspal" uniqKey="Singh J" first="Jaspal" last="Singh">Jaspal Singh</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001554 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001554 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19684114
   |texte=   A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19684114" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020